
DOCUMENT RESUME

ED 448 742 IR 020 505

AUTHOR Verhoeven, B.; Duval, E.; Olivie, H.
TITLE A Generic Metadata Query Tool.
PUB DATE 1999-10-00
NOTE 7p.; In: WebNet 99 World Conference on the WWW and Internet

Proceedings (Honolulu, Hawaii, October 24-30, 1999); see IR
020 454. Some figures contain very small and illegible font.

PUB TYPE Reports Descriptive (141) Speeches/Meeting Papers (150)
EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS *Computer Interfaces; *Computer Software Development;

Computer System Design; Databases; *Information Retrieval;
User Needs (Information)

IDENTIFIERS Graphical User Interfaces; *Metadata; *Query Processing

ABSTRACT
This paper discusses a generic query tool that enables an

end user to query a metadata store through filters that impose search
criteria on attributes. The Metadata Query Tool (MQT) is generic in the sense
that it dynamically creates its user interface, based on configuration files
that define the metadata scheme and the query functionalities. Although, in
principle, the tool can be used to query any relational database, it has been
specifically developed to query educational metadata stored in the ARIADNE
Knowledge Pool System. The first section of the paper is an introduction,
followed by a section that describes the approach to filter-based queries.
The third section explains the configurable aspect of MQT, both with respect
to the metadata scheme, as well as with respect to the graphical user
interface. Some details on the queries generated by MQT are presented in the
fourth section. The fifth section covers some user interface aspects. The
sixth section gives an overview of related research and tools. The current
status is presented in the seventh section. (Contains 11 references.) (MES)

Reproductions supplied by EDRS are the best that can be made
from the original document.



U.S. DEPARTMENT OF EDUCATION
Office of Educational Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

This document has been reproduced as
received from the person or organization
originating it.

Minor changes have been made to
improve reproduction quality.

Points of view or opinions stated in this
document do not necessarily represent
official OERI position or policy.

A Generic Metadata Query Tool

B. Verhoeven, E. Duval[11, H. Olivie
Dept. Computer Science

Katholieke Universiteit Leuven (B)
Celestijnenlaan 200A, B-3001 Heverlee. Belgium

E-mail: {Bart.Verhoeven,Erik.Duval,Henk.Olivie}@cs.kuleuven.ac.be

1

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL HAS

BEEN GRANTED BY

G.H. Marks

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

Abstract: This paper discusses a generic query tool that enables an end user to query a
metadata store through filters that impose search criteria on attributes. The Metadata Query
Tool (MQT) is generic in the sense that it dynamically creates its user interface, based on
configuration files that define the metadata scheme and the query functionalities. Although
the tool can in principle be used to query any (view on a) relational database, we have
developed it to query educational metadata, stored in the ARIADNEI21 Knowledge Pool
System [Forte, Wentland & Duval 1997].

1. Introduction
Metadata can be described as "data about data". A good example is a library catalog, which contains

information (metadata) about publications (data). Advantages of using metadata to describe electronic resources
are numerous [lannella & Waugh 1997] and include the possibility to efficiently search for data.

Creating an intuitive and powerful Web tool for metadata querying is not an easy task, the more so if we
want to develop this tool in a generic way, i.e. without 'hard coding' a particular metadata scheme into it.
Moreover, we also want the tool to be flexible in the sense that the query functionality itself must be
configurable: the user interface should reflect the important metadata fields and provide a user friendly, yet
powerful, mechanism to query the metadata instances. The ideal user interface may depend on the (type of) user
and his/her interests and therefor should not be fixed given a certain metadata scheme.

This paper describes how we have developed such a tool. The text is structured as follows. The next section
describes the approach of filter based queries. Section 3 explains the configurable aspects of MQT, both with
respect to the metadata scheme, as well as with respect to the graphical user interface. Some details on the
queries generated by MQT are presented in section 4. The next section covers some user interface aspects.
Section 6 gives an overview of related research and tools. Before concluding, we briefly present the current
status in section 7.

2. Filter Based Metadata Querying
The metadata we want to query is stored in the ARIADNE Knowledge Pool System [Forte, Wentland &

Duval 1997], which basically is a distributed RDBMS. As we wanted to develop a user friendly query tool, we
had to develop a reasonably intuitive mechanism, rather than asking the end user to enter SQL-queries. The
approach we adopted in MQT is filter based querying (also called content-based filtering) [Mukherjea & Foley
1995]: users define filters on attributes to impose search criteria. A filter on the document title for instance leads
to a search for documents, whose title starts with, ends with or contains a search string.

Available filters are defined in one of the configuration files of MQT. Different types of filters are available
for different types of attributes, data types, conditions and functions. [Fig. 1] gives a short overview of the
different types and their associated functionalities.

Filter type Fields I Attribute type Conditions
I

Basic Textbox String Starts with, Contains, Ends with
Number <, <=, =, >=, >

Date <, <= = >= >

List Pulldown NA NA

Composed Panel NA NA

O Figure 1 : Different filters and their associated functionality

O

2
BEST COPY AVAILABLE



Basic filters enable the user to search on (sub-)strings, numbers and dates, based on conventional operators.
A list filter contains all applicable values for the associated attribute. The relevant values for such a list filter are
retrieved from the database when MQT is launched. Composed filters contain basic and list filters, or other
composed filters (see below).

At all times, MQT displays a list of all active filters, which can be deactivated through a simple button
associated with each filter. This is illustrated by the simplified screen dump presented in [Fig. 4].

3. Configuration
MQT is developed in a general way: it contains no hard coded references to the metadata scheme, in the form

of tables or attributes in the database. This is achieved by a configuration file, which defines the metadata
scheme (relations, attributes interrelationships between the relations), as will be explained in section 3.1.

Because not all database attributes are useful in search criteria, the query tool also uses another configuration
file, which defines the queries to be supported on the database, as explained in section 3.2.

In this way, MQT can be used to query any metadata store accessible through JDBC (see below).

3.1. Data Scheme Configuration File
This configuration file describes the metadata scheme, in the form of its representation as a relational

database scheme. It contains all information needed to generate the queries. More specifically, this configuration
file includes the following information:

Database relations
For each relation:

Attributes
Primary key

References between the database relations

[Fig. 2] illustrates the XML representation of this information.

<DATAMODEL>
<ENTITY>

<NAME> Pedagogical_Header </NAME>
<ATTRIBUTE>

<NAME> Id </NAME>
<TYPE> STRING </TYPE>

</ATTRIBUTE>
<ATTRIBUTE>

<NAME> Document Title </NAME>
<TYPE> STRING <7TYPE>

</ATTRIBUTE>
<ATTRIBUTE>

<NAME> Package_Size </NAME>
<TYPE> INTEGER </TYPE>

</ATTRIBUTE>
<KEY> Id </KEY>

</ENTITY>

<ENTITY>
<NAME> User_Comments </NAME>
<ATTRIBUTE>
<NAME> Comment Id </NAME>
<TYPE> INTEGER </TYPE>

</ATTRIBUTE>
<ATTRIBUTE>
<NAME> Header_Id </NAME>
<TYPE> STRING </TYPE>

</ATTRIBUTE>
<ATTRIBUTE>
<NAME> Author </NAME>
<TYPE> STRING </TYPE>
<MULTIVALUED> YES </MULTIVALUED>

</ATTRIBUTE>

<ATTRIBUTE>
<NAME> Comment </NAME>
<TYPE> STRING </TYPE>
<MULTIVALUED> YES </MULTIVALUED>

</ATTRIBUTE>
<KEY> Comment_Id </KEY>

< /ENTITY>

. MAINENTITT> Pedegogicel_Header ./MAINENTITY>

<MAINATTRIBUTH, Document_Ti tle </MAINATTRIBUTS,

<REFERENCES>
<REFERENCE>

<FROM>
<ENTITY> User_Comments </ENTITY>
<ATTRIBUTE> Header_Id </ATTRIBUTE>

</FROM>
<TO>

<ENTITY> Pedagogical_ </ENTITY>
<ATTRIBUTE> Header_Id </ATTRIBUTE>

</TO>
</REFERENCE>

</REFERENCES>

</DATAMODEL>

Figure 2: Possible data scheme configuration file

The data model of [Fig. 2] first defines a 'pedagogical header', ARIADNE jargon for an educational metadata
instance [Forte, Wentland & Duval 1997]. The ARIADNE approach for semantic interoperability in educational
metadata is presented in [Forte et al. 1999].

Entities in the configuration file correspond with relations in the database. In the extremely simplified view
of [Fig. 2], such an instance contains an identifier (Id), a title (Document_Ti t le) and the size of the
document being described (Package_Size). The key attribute of this entity is the identifier. The second entity
defines user comments, which consist of an identifier for the comment (Comment_Id), the identifier of the

3 BEST COPY AVAILABLE"



pedagogical header the comment refers to (Header_Id), the author (Author) and the content of the comment
(Comment). The latter two attributes are multivalued. The <REFERENCES> section defines the relationship
between the user comment and the pedagogical header it refers to.

Besides this kind of information, the configuration file also defines a main relation and a main attribute in
this relation. Both of these are used to build the user interface (see below). The main relation is also used to
generate queries, which retrieve a result list (list of metadata instances satisfying the search criteria) or a specific
metadata instance from the metadata store.

3.1.1. GUI Configuration File
This configuration file describes the attributes the user interface should provide filters for. Filters are

logically grouped, so that a well-structured user interface can be constructed. An example GUI configuration file
is presented in [Fig. 3].

<GUIDATAMODEL>
<FILTERCATEGORY>

<DESCRIPTION> General information </DESCRIPTION>
<TOOLTIP> General information of the document </TOOLTIP>
<FILTER>
<NAME> Document title </NAME>
<ENTITY> Pedagogical_Header </ENTITY>
<ATTRIBUTE> Document_Title </ATTRIBUTE>

</FILTER>
<FILTER>

<NAME> Language </NAME>
<ENTITY> Element Language </ENTITY>
<ATTRIBUTE> Language Name </ATTRIBUTE>
<TYPE> LIST </TYPE>

</FILTER>
<FILTER>
<NAME> User comments </NAME>
<TYPE> COMPOSITE </TYPE>
<FILTER>

<NAME> User comment by </NAME>
<ENTITY> User_Comments </ENTITY>
<ATTRIBUTE> Author </ATTRIBUTE>

</FILTER>

<FILTER>
<NAME> User comment </NAME>
<ENTITY> User_Comments </ENTITY>
<ATTRIBUTE> Comment </ATTR/BUTE>

</FILTER>
</FILTER>

< /FILTERCATEGORY>< FILTERCATEGORY>
<DESCRIPTION> Technical Information </DESCRIPTION>
<TOOLTIP> Technical information of the document </TOOLTIP>
<FILTER>

<NAME> Package Size </NAME>
<ENTITY> Pedagogical_Header </ENTITY>
<ATTRIBUTE> Package_Size </ATTRIBUTE>

</FILTER>
</ FILTERCATEGORY>

</GUIDATAMODEL>

Figure 3: Possible GUI configuration file based on the data scheme presented in [Fig. 21

The simplified configuration file of [Fig. 3] defines two categories of filters, one to query on general
information and one for technical characteristics. Both categories are described by tooltips that will be presented
to the end user when the mouse is positioned over the category selector (see below).

The general category contains two filters, one to search on document title and one for the language of the
document. For each filter, the corresponding attribute in the corresponding entity (i.e. database relation) is
defined. Similarly, the filter category for technical data defines one filter, to search on package size.

The general category also contains a composite filter to search on user comments. A composite filter
represents a composite metadata field. In this case, the composite filter consists of two sub-filters, to search on
the author of a comment and the content of the comment (given by a specific author) respectively.

4. Metadata Queries
The queries generated by MQT can be divided into 2 categories:

I. queries that identify the metadata instances that satisfy the search criteria: the set of these instances
is called the result list;

2. queries that retrieve one complete metadata instance from the database.

The query that retrieves the result list is roughly structured as follows:
SELECT <key attributes>,<main attribute>
FROM <main entity>,<relations with active filters on an attribute>
WHERE <conditions imposed by active filter>
AND <join conditions for relations in the from-clause>

The main attribute values are displayed in the result list (see the lower right area in [Fig. 4]). According to
the configuration file of [Fig. 2], this would mean that the document title is shown for each document in the
result list. The associated key values are used to retrieve the complete metadata instance from the database upon
user request.

Retrieving one metadata instance from the database is somewhat more complicated, mainly because the
interrelationships between the database relations can be optional and because there can be multiple

4
BEST COPY AVAILABLE



interrelationships between the same two relations. The basic approach to solve this problem is to execute
separate queries for each relevant relation.

5. User Interface
[Fig. 4] displays a screen dump of the user interface of MQT based on the previously given configuration

files. In reality many more categories and filters are present. The query window (upper left, with "Document
Query" as title) basically enables the end user to activate or deactivate filters. For each attribute, a text box or
pulldown menu can be used to indicate the search value and the operator ("starts with", "=", etc.) to be applied.

ttital vkady:Sei es ca. SIAM /VDU 1111*

Document Query Search Criteria--
,r1 r. rn

'1!".0",`

Ilassrat
irar... mazat

Tvned,tat
reativ SI=

".,
Selected Document

1401PrIM

* SI 1U.1 M1:1 if unar:ti :ft till
'Al(IAL,NA411,11.1:.t.11004.-ji

Result LW: 86

ittr/
t.,14 ri4fica FY(4

r.tri DE;EW.,364.i.ent./f.0
13:. FRSCEi CS:1,511..aram1

0 &Adel; a hut.' -j arcs
, . . .

T.1""1!).J9.11.
FI::T4Sitil..TTIC,11...)?E PLAN tilt4:1

7,::,1),t C,J14,

V.M. n 4.11104,10

eatzvammd

Figure 4: Screen dump of the user interface of MQT given the configuration files of [Fig. 2] & [Fig. 3]

The structure of the query window is identical to that of the data window (lower left, with "Selected
Document" title) that displays one particular metadata instance. This was a deliberate design decision, as it
makes it more apparent why an instance is included in the result set: the search criteria in the query window can
immediately and intuitively be related to the instance values in the data window.

In the upper right area, the active search criteria are displayed in shorthand, so that users have an overview of
all active filters at all times. We have added this functionality because of feedback we received on an earlier
version of the MQT tool. Without this overview, users quickly lost track of the filters they had applied, and the
search values associated with those filters.

Because the number of commands is relatively limited, all commands are available by buttons. Buttons for
general commands are situated at the top of the window. These enable an end user to:

start the query: this means that the query is actually sent to the database, processed, and that the
result list is displayed;
reset everything: all active filters are deactivated and the results list is re-initialized as an empty
result list;
current status: displays the database that MQT is connected to;
about this tool: provides information about the goal and purpose of the tool;
exit: the MQT application exits.

Those commands that operate on one specific metadata instance are placed under the result list, as users must
select such an instance from that list before applying the command. These commands enable an end user to:

view the complete metadata instance;
download the actual document described by the metadata: this command prompts for a user
identifier and a password, as only metadata are publicly accessible, but the actual documents are
restricted to members of the ARIADNE user group <http://ariadne.unil.ch> (if they are free).

The GUI configuration file (as given in [Fig. 3]) defines the exact layout and configuration of the different
graphical components. A filter category in the configuration file corresponds with a Tab panel in the query and

5 BEST COPY AVAILABLE



the data window. A filter in the configuration file corresponds with a graphical component in the query window
that enables the user to activate/deactivate the filter, as well as with a graphical component that displays the
value of a metadata instance in the data window. The type of the graphical component depends on the filter type
and the type of the corresponding attribute. The filter type defines the layout and the attribute type determines
the available operators.

A composite filter in the GUI configuration file results in a bordered graphical component, which contains
the graphical components of the participating filters. The main entity and main attribute are used to indicate the
metadata instances that satisfy the search criteria in the result list.

6. Related Research and Tools
Related research can be divided in three different categories: metadata query tools, other query tools

(subdivided into XML and web query tools) and general metadata tools.
1. The field of metadata querying is still in full development and not many tools are available. All of the

existing metadata query tools we could find either operated on a fixed metadata scheme (Dublin Core, ...) or
used some "external" protocol for communicating with the data store (e.g. QUANTUM [Hindall & Haines 1997]
uses Z39.50 for querying the database(s)). MQT has no fixed metadata scheme, but it does use JDBC (and SQL)
for communicating with the data store.

2a. Since the data scheme configuration file (see [Fig. 2]) can easily be transformed into an XML-DTD,
MQT is closely related to XML query tools. XML querying recently became very popular and the ongoing
research looks very promising, but it's still in its infancy. One example of such a tool is Innerview
<http://www.t2000-usa.com/>, but there still is no uniform, standardised query protocol and mechanism. This
might change quickly as some proposals already exist [XML-QL 1998] [XQL 1998].

2b. One more developed research area concerns web querying. There are a lot of sophisticated web search
engines available, but there exists no uniformity amongst different tools and the documents on the web don't
comply to a standardised, uniform indexing method so that it's very hard to find what you're looking for. This
could be facilitated by the use of metadata, but since this is not standardised for the web, web search engines use
keywords indexing (and a fixed user interface).

3. Finally, there are general metadata tools. There is one tool in particular we took as a starting point in our
design: Reggie [Reggie 1999] is a metadata insertion tool. It uses an input scheme (which ranges from Dublin
Core to your own defined scheme) to describe its metadata set and builds its user interface (and associated
functionality) based on the selected scheme. Contrary to MQT, Reggie is used to describe data (that is to insert
metadata) and it is developed as an applet.

7. Current Status
During the development of MQT, we were confronted with the classical trade-off between functionality and

user friendliness. We tried to keep the user interface as intuitive as possible while still supporting quite powerful
search possibilities. The user interface also has its limitations though: the result list displays only one attribute
for every hit,...

MQT supports any possible combination of active filters, but its functionality is limited in some ways. One
of the main limitations is that only the logical 'and' operator is used in the queries: this means that it is impossible
to search for documents, whose title starts with 'Behind the scenes' or 'A closer look at'. On the other hand,
usability-engineering research consistently shows that users have great difficulty to use boolean operators in the
correct way [Shneiderman 1998].

As mentioned before, MQT has been developed in the first place as a query tool for educational metadata in
the ARIADNE project [Forte, Wentland & Duval 1997]. All metadata in ARIADNE are stored in a relational
database, mainly because of technical reasons [Cardinaels et al., 1998]. MQT is a Java application that uses
JDBC to interact with the database. The decision to use a Java application and not an applet or servlet is based
on several factors:

1. Servlets generate HTML. Given the current limitation of HTML browsers, this is not a sound
development base for an intuitive and powerful user interface.

2. Because of security restrictions, applets cannot communicate with databases that run on servers
different from the one that serves the applet.

Java interfaces have been defined for different kinds of filters (see above), attribute types and conditions, so
that it is relatively easy to extend the functionality of MQT by adding a new type of filter, attribute type or
condition.

6



Since early 1999, MQT has been deployed within the ARIADNE community and is being used by several
hundreds of persons. Based on feedback received in first user trials, we have added the "Search Criteria"
window, as mentioned above. Other feedback indicates that this tool indeed serves its major purpose and does
enable end users to zoom in fairly quickly on relevant reusable educational resources.

Future work includes the migration from a 2-tier to a 3-tier architecture and the use of introspection of
classes in the middleware layer to enable an automatic configuration of the tool.

8. Conclusion
One of the main requirements for the metadata query tool in the Ariadne project [Forte, Wentland & Duval

1997] was that the metadata scheme should not be hard coded, as we wanted to develop a tool that was flexible
enough to query metadata stores with different metadata schemes. Using XML configuration files describing the
metadata scheme and the required query functionality provided us with the flexibility we wanted to achieve.

Our query approach relies heavily on refinement, through filter based querying. A user can activate and
deactivate filters over attributes. Currently, our tool supports basic filters, list filters and composite filters, but
new filter types can easily be incorporated.

The approach discussed in this paper leads to a generic query tool, which can be used to query any kind of
metadata in any kind of store that can be accessed through JDBC.

9. References
[Cardinaels et al. 1998] K. Cardinaels, K. Hendrikx, E. Vervaet, E. Duval, H. Olivie, F. Haenni, K. Warkentyne,

M. Wentland Forte & E. Forte. A Knowledge Pool System of Reusable Pedagogical
Elements. Proceedings of CALISCE98 - 4th International Conference of Computer-
Aided Learning and Instruction in Science and Engineering, pp. 54-62.

[Forte et al. 1999] E. Forte, F. Haenni, K. Warkentyne, E. Duval, K. Cardinaels, E. Vervaet, K. Hendrikx,
M. Wentland Forte & F. Simillion. Semantic and Pedagogic Interoperability Mechanisms
in the Ariadne Educational Repository. Accepted for a SIGMOD Record Special Issue on
Semantic Interoperability in Global Information Systems, 1999.

[Forte, Wentland & Duval 1997a] E. N. Forte, M. H. K. Wentland Forte & E. Duval. The ARIADNE project (partl) -
Knowledge Pools for Computer Based & Telematics Supported Classical, Open &
Distance Education. European Journal of Engineering Education, Vol. 22, No. 1, pp. 61-
74.

[Forte, Wentland & Duval 1997b] E. N. Forte, M. H. K. Wentland Forte & E. Duval. The ARIADNE project (partll) -
Knowledge Pools for Computer Based & Telematics Supported Classical, Open &
Distance Education. European Journal of Engineering Education, Vol. 22, No. 2, pp.
153-166.

[Hindall & Haines 1997] M. H. Hindall, M. Haines. QUANTUM: A Query and Analysis Tool For Use With
Metadata. Proceedings of the Second IEEE Metadata Conference, 1997.
http://www.computer.org/conferen/proceed/meta97/papers/mtindall/mti ndal I .html

[Iannella & Waugh 1997] R. Iannella , A. Waugh. Metadata: Enabling the Internet. Proceedings of CAUSE97
"The Information Professions and the Information Professional".
<http://archive.dstc.edu.au/RDU/reports/CAUSE97/>

[Mukherjea & Foley 1995] S. Mukherjea & J. D. Foley. Visualizing the World-Wide Web with the Navigational
View. Electronic Proceedings of the Third International World-Wide Web Conference
(WWW '95), 1995. <http: / /www.igd.fhg.de /www /www95 /papers /44 /mukh/mukh.html>

[XML-QL 1998] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, D. Suciu. XML-QL: A Query
Language for XML, Submission to the World Wide Web Consortium, 19 August 1998.
<http://www.w3.org/TR/NOTE-xml-ql>

[XQL 1998] J. Robie, J. Lapp, D. Schach. XML Query Language (XQL).
<http://www.w3.org/Style/XSL/Group/1998/09/XQL-proposal.html>

[Reggie 1999] Reggie: The Metadata editor. <http://metadata.net/dstc/>
[Shneiderman 1998] Ben Shneiderman. Designing the User Interface. Strategies for Effective Human-

Computer Interaction. Addison-Wesley, 1998. <http: / /www.aw.com/DTUI>

Acknowledgments
[1] Erik Duval is supported as a post-doctoral fellow by the National Fund for Scientific Research Flanders (Belgium).
[2] Ariadne is supported by the Telematics Applications of the European Commission and by the Swiss Federal Office for

Education and Science.

7



U.S. Department of Education
Office of Educational Research and Improvement (OERI)

National Library of Education (NLE)
Educational Resources Information Center (ERIC)

NOTICE

REPRODUCTION BASIS

ERIC

This document is covered by a signed "Reproduction Release
(Blanket) form (on file within the ERIC system), encompassing all
or classes of documents from its source organization and, therefore,
does not require a "Specific Document" Release form.

This document is Federally-funded, or carries its own permission to
reproduce, or is otherwise in the public domain and, therefore, may
be reproduced by ERIC without a signed Reproduction Release form
(either "Specific Document" or "Blanket").

EFF-089 (9/97)


